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We aimed to generated counterfactual explanations for why a piece of 
fake news is fake.
Research Questions:
1. How can we generate a good counterfactual explanation for a given 

fake claim?
2. Do different types of counterfactual explanations (i.e., affirmative, 

negative, and mixed) vary in best explaining why a piece of news is 
fake?

3. How do counterfactual explanations best explain why a piece of news 
is fake compared to other state-of-the-art explanations?

4. Does an individual’s familiarity (familiar vs. unfamiliar) with 
misinformation impact the effectiveness of counterfactual? 
explanations?

Definition: The result of doing something that is counter to fact. [1]

Counterfactual formats [2]:
Affirmative (CF-A): “If we were to say !" instead of #" , the claim would be 
correct.”
Negative (CF-N): “If we were to say not $" but instead !" , the claim would 
be correct.”
Mixed (CF-M): “If we were to say %$" and/but say #", the claim would be 
correct.”

$": Claim, !": Declarative Sentence
#": smallest change needed to $" to flip the reader’s opinion.
%$": the negation of the false claim
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Counterfactual Explanation

We randomly selected 500 False Claims from the FEVER dataset to 
generate the CF explanations.
Error Analysis:

We compared CF explanations with two SOTA summary-based model 
• Extractive (EXT) : DistillBert [3]
• Abstractive (ABS): RoBERTa [4]
Both models were fine-tuned on CNN/Daily Mail dataset.
Survey 1: Compared the explainability of the three CF explanations for 
why a piece of news is fake. (425 participants. Each completed 5 samples)

Proportion of each explanation being selected as the best or the worst 
explanation. 
Survey 2:  Compared the best CF explanation from Survey-1 with the 
SOTA summary-based methods. (625 participants. Each completed 3 
samples)

The average ranking * calculates the average ranking without any CF 
generation system errors.

CF method outperforms the existing SOTA summary-based 
methods by 0.19 ranking place

*Equally contribution
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